UGEB2530 Games and Strategic Thinking Sequential games

- 1. There is a number of chips on the table. Two players play a game with the following rules. In each turn, a player may remove 1,3,4 or 5 chips from the table. The player who makes the last move wins.
 - (a) Determine whether n is a P-position or an N-position for n = 8, 9, 10, 11.
 - (b) Find a winning move for the first player if initially there are n chips for n = 100, 101, 102.

Solution.

(a)	0	1	2	3	4	5	6	7	8	9	10	11	12
(a)	Р	N	Р	Ν	Ν	Ν	Ν	Ν	Р	Ν	Р	Ν	Ν
	We	see	that	8,1	0 ar	e P-	posi	tion	and	9,1	1 ar	e N-r	ositi

(b) Position n is a P-position if the remainder is 0 or 2 when n is divided by 8. Thus we have the following winning moves.

n	100	101	102
Winning moves	96	$96,\!98$	98

- 2. Let \oplus denotes the nim-sum.
 - (a) Find $27 \oplus 17$
 - (b) Find x if $x \oplus 38 = 25$.
 - (c) Prove that if $x \oplus y \oplus z = 0$, then $x = y \oplus z$.

Solution.

(a) Write the numbers in binary form $27 = 11011_2$ and $17 = 10001_2$. Now

			1	1	0	1	1_{2}	
		\oplus	1	0	0	0	1_2	
	-			1	0	1	02	
Thus $27 \oplus 17 = 1010_2 = 1$	0.							
		x	;⊕	38	=	2	5	
	$x \in$	$ \ni 38 $	$B \oplus$	38	=	2	$5 \oplus 3$	38
				x	=	2	$5 \oplus 3$	38
					=	6	3	
				x	$\oplus y$	\oplus	<i>z</i> =	=
\Rightarrow	я	$r \oplus$	$y \in$	i z	$\oplus y$	\oplus	z =	=
\Rightarrow a	$r \oplus$	$(y \in$	$\exists y$)	(z	$\oplus z$;) =	=
\Rightarrow				x	$\oplus 0$	\oplus	0 =	=

$$\Rightarrow$$
 $x = y \oplus z$

 $0 \\ y \oplus z \\ y \oplus z \\ y \oplus z$

(c)

(b)

- 3. Find all winning moves in the game of nim,
 - (a) with three piles of 12, 19, and 27 chips.
 - (b) with four piles of 13, 17, 19, and 23 chips.

Solution.

(a) Write the numbers in binary form $12 = 1100_2$, $19 = 10011_2$ and $27 = 11011_2$. Consider the nim-sum

We see that (12, 19, 27) has a winning move to (8, 19, 27).

(b) For the nim game with four pile of chips, a position (a, b, c, d) is a P-position if $a \oplus b \oplus c \oplus d = 0$. Write the numbers in binary form $13 = 1101_2$, $17 = 10001_2$, $19 = 10011_2$ and $23 = 10111_2$. Consider the nim-sum

		1	1	0	1_2
	1	0	0	0	1_2
	1	0	0	1	1_2
\oplus	1	0	1	1	1_2
	1	1	0	0	0_{2}

The position (13, 17, 19, 23) has three winning moves to (13, 9, 19, 23), (13, 17, 11, 23) and (13, 17, 19, 15).